A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Photonic Scheme for the Generation of Background-Free Phase-Coded Microwave Pulses and Dual-Chirp Microwave Waveforms

2022-02-16

 

Author(s): Li, GY (Li, Guangyi); Shi, DF (Shi, Difei); Jia, ZY (Jia, Zhiyao); Wang, L (Wang, Lu); Li, M (Li, Ming); Zhu, NH (Zhu, Ning Hua); Li, W (Li, Wei)

Source: IEEE PHOTONICS JOURNAL Volume: 13 Issue: 2 DOI: 10.1109/JPHOT.2021.3070970 Published: APR 2021

Abstract: We propose a photonic scheme to generate binary phase-coded microwave pulses and dual-chirp microwave waveforms without baseband-modulated signals (background noise) based on a dual-polarization dual-drive Mach-Zehnder modulator (DP-DDMZM) which contains x-DDMZM and y-DDMZM at two different polarization states. A radio frequency (RF) signal from a microwave source is transferred into two differential RF signals and employed into one arm of x-DDMZM and one arm of y-DDMZM, while a baseband signal from an arbitrary waveform generator is divided by an electronic coupler and then driven into the two other arms of DP-DDMZM. By adjusting the phase differences between the x-DDMZM and the y-DDMZM, binary phase-coded pulses and dual-chirp signals without baseband-modulated signals are generated. The proposed scheme can eliminate the interference caused by baseband-modulated signals, and satisfy different radar applications for different frequency bands. Experimental results show that phase-coded signals at 15 GHz with the bit rates of 1 Gb/s and 2 Gb/s and dual-chirp signals at 10 GHz and 15 GHz with the time durations of 0.5 mu s are successfully generated. The reported scheme is well analyzed in theory and verified by experiment.

Accession Number: WOS:000749918800001

ISSN: 1943-0655

eISSN: 1943-0647

Full Text: https://ieeexplore.ieee.org/document/9395208



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明