A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Strain-induced circular photogalvanic current in Dirac semimetal Cd3As2 films epitaxied on a GaAs(111)B substrate

2022-02-15

 

Author(s): Liang, GM (Liang, Gaoming); Zhai, GH (Zhai, Guihao); Ma, JL (Ma, Jialin); Wang, HL (Wang, Hailong); Zhao, JH (Zhao, Jianhua); Wu, XG (Wu, Xiaoguang); Zhang, XH (Zhang, Xinhui)

Source: NANOSCALE DOI: 10.1039/d1nr05812f Early Access Date: JAN 2022

Abstract: Dirac semimetal (DSM) Cd3As2 has drawn great attention for exploring the novel quantum phenomena and high-speed optoelectronic applications. The circular photogalvanic effect (CPGE) current, resulting from the optically-excited spin orientation transport, was theoretically predicted to vanish in an ideal Dirac system due to the symmetric photoexcitation about the Dirac point. Here, we reported the observation of the CPGE photocurrent in epitaxial Cd3As2 thin films grown on a GaAs(111)B substrate. The signature of the CPGE is confirmed by its sign reversal upon switching the helicity of optical radiation, as well as its dependence on the excitation incident angle and power. By comparison of the CPGE response between the films with different thicknesses, it is suggested that the observed CPGE results from the reduced structure symmetry and substantially modified electronic band structure of the Cd3As2 thin film that undergoes large epitaxial strain. Our experimental findings provide a valuable reference for the band engineering and exotic helicity-dependent photocurrent phenomena in DSMs towards their potential opto-spintronic device applications.

Accession Number: WOS:000747889600001

PubMed ID: 35088779

ISSN: 2040-3364

eISSN: 2040-3372

Full Text: https://pubs.rsc.org/en/content/articlelanding/2022/NR/D1NR05812F



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明