A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

A high-performance brain switch based on code-modulated visual evoked potentials

2022-02-07

 

Author(s): Zheng, L (Zheng, Li); Pei, WH (Pei, Weihua); Gao, XR (Gao, Xiaorong); Zhang, LJ (Zhang, Lijian); Wang, YJ (Wang, Yijun)

Source: JOURNAL OF NEURAL ENGINEERING Volume: 19 Issue: 1 Article Number: 016002 DOI: 10.1088/1741-2552/ac494f Published: FEB 1 2022

Abstract: Objective. Asynchronous brain-computer interfaces (BCIs) are more practical and natural compared to synchronous BCIs. A brain switch is a standard asynchronous BCI, which can automatically detect the specified change of the brain and discriminate between the control state and the idle state. The current brain switches still face challenges on relatively long reaction time (RT) and high false positive rate (FPR). Approach. In this paper, an online electroencephalography-based brain switch is designed to realize a fast reaction and keep long idle time (IDLE) without false positives (FPs) using code-modulated visual evoked potentials (c-VEPs). Two stimulation paradigms were designed and compared in the experiments: multi-code concatenate modulation (concatenation mode) and single-code periodic modulation (periodic mode). Using a task-related component analysis-based detection algorithm, EEG data can be decoded into a series of code indices. Brain states can be detected by a template matching approach with a sliding window on the output series. Main results. The online experiments achieved an average RT of 1.49 s when the average IDLE for each FP was 68.57 min (1.46 x 10(-2) FP min(-1)) or an average RT of 1.67 s without FPs. Significance. This study provides a practical c-VEP based brain switch system with both fast reaction and low FPR during idle state, which can be used in various BCI applications.

Accession Number: WOS:000746160000001

PubMed ID: 34996051

ISSN: 1741-2560

eISSN: 1741-2552

Full Text: https://iopscience.iop.org/article/10.1088/1741-2552/ac494f



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明