A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Effect of nitrogen gas flow and growth temperature on extension of GaN layer on Si*

2021-12-24

 

Author(s): Xu, JK (Xu, Jian-Kai); Jiang, LJ (Jiang, Li-Juan); Wang, Q (Wang, Qian); Wang, Q (Wang, Quan); Xiao, HL (Xiao, Hong-Ling); Feng, C (Feng, Chun); Li, W (Li, Wei); Wang, XL (Wang, Xiao-Liang)

Source: CHINESE PHYSICS B Volume: 30 Issue: 11 Article Number: 118101 DOI: 10.1088/1674-1056/abff30 Published: DEC 2021

Abstract: The effect of nitrogen flow and growth temperature on extension of GaN on Si substrate has been studied. By increasing the nitrogen flow whose outlet is located in the center of the MOCVD (metal-organic chemical vapor deposition) gas/particle screening flange and by increasing the growth temperature of HT-AlN and AlGaN buffer layers near the primary flat of the wafer, the GaN layer has extended more adequately on Si substrate. In the meantime, the surface morphology has been greatly improved. Both the AlN and GaN crystal quality uniformity has been improved. X-ray diffraction results showed that the GaN (0002) XRD FWHMs (full width at half maximum) decreased from 579 arcsec similar to 1655 arcsec to around 420 arcsec.

Accession Number: WOS:000729981600001

ISSN: 1674-1056

eISSN: 2058-3834

Full Text: https://iopscience.iop.org/article/10.1088/1674-1056/abff30



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明