A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

An Adaptive Neurofeedback Method for Attention Regulation Based on the Internet of Things

2021-12-17

 

Author(s): Cai, HS (Cai, Hanshu); Zhang, Y (Zhang, Yi); Xiao, H (Xiao, Han); Zhang, J (Zhang, Jian); Hu, B (Hu, Bin); Hu, XP (Hu, Xiping)

Source: IEEE INTERNET OF THINGS JOURNAL Volume: 8 Issue: 21 Pages: 15829-15838 DOI: 10.1109/JIOT.2021.3083745 Published: NOV 1 2021

Abstract: The rapid development of the COVID-19 pandemic has threatened the lives of people around the world. Many people were caught in anxiety and panic, which also prevents people from fully concentrating on their normal lives. However, the current common neurofeedback therapies used to solve the problem of lack of attention cannot fully deal with the differences in each individual. In addition, direct contact between the patient and the doctor also increases the risk of virus transmission during treatment. This article combines neurofeedback and IoT to establish an adaptive attention adjustment method. IoT connects patients and doctors remotely, reducing the direct contact between them. In order to adapt to individual differences, the feedback indicators of each individual are individually calibrated. In addition, the proportional, integral, and derivative controller was used to adjust the difficulty of the feedback task to adapt to each individual's self-regulation ability and provide the individual with a higher level of regulation. We also designed adaptive attention adjustment experiments for different individuals. The results show that through adaptive feedback training, the individual's feedback indicator has dropped by 77.90%, and the individual can adjust his attention state to the individual's optimal baseline threshold, and the oscillation error gradually reduces to the expected threshold range. This method can cope with the differences between different individuals and provide each individual with the same level of feedback regulation. In the future, this study may provide a general adjuvant treatment for other mental illnesses.

Accession Number: WOS:000711808500020

ISSN: 2327-4662

Full Text: https://ieeexplore.ieee.org/document/9440926



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明