A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Demonstration of thermal modulation using nanoscale and microscale structures for ultralarge pixel array photothermal transducers

2021-12-17

 

Author(s): Zhang, JY (Zhang, Jinying); Li, DF (Li, Defang); Li, Z (Li, Zhuo); Wang, X (Wang, Xin); Yang, SH (Yang, Suhui)

Source: MICROSYSTEMS & NANOENGINEERING Volume: 7 Issue: 1 Article Number: 102 DOI: 10.1038/s41378-021-00315-5 Published: DEC 3 2021

Abstract: Large-pixel-array infrared emitters are attractive in the applications of infrared imaging and detection. However, the array scale has been restricted in traditional technologies. Here, we demonstrated a light-driven photothermal transduction approach for an ultralarge pixel array infrared emitter. A metal-black coating with nanoporous structures and a silicon (Si) layer with microgap structures were proposed to manage the thermal input and output issues. The effects of the nanoscale structures in the black coating and microscale structures in the Si layer were investigated. Remarkable thermal modulation could be obtained by adjusting the nanoscale and microscale structures. The measured stationary and transient results of the fabricated photothermal transducers agreed well with the simulated results. From the input view, due to its wide spectrum and high absorption, the black coating with nanoscale structures contributed to a 5.6-fold increase in the temperature difference compared to that without the black coating. From the output view, the microgap structures in the Si layer eliminated the in-plane thermal crosstalk. The temperature difference was increased by 340% by modulating the out-of-plane microstructures. The proposed photothermal transducer had a rising time of 0.95 ms and a falling time of 0.53 ms, ensuring a fast time response. This method is compatible with low-cost and mass manufacturing and has promising potential to achieve ultralarge-array pixels beyond ten million.

Accession Number: WOS:000726064900001

ISSN: 2055-7434

Full Text: https://www.nature.com/articles/s41378-021-00315-5



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明