A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Efficient Organic Solar Cells Enabled by Simple Non-Fused Electron Donors with Low Synthetic Complexity

2021-12-10

 

Author(s): Gao, Yueyue; Cui, Minghuan; Qu, Shengchun; Zhao, Huaping; Shen, Zhitao; Tan, Furui; Dong, Yulian; Qin, Chaochao; Wang, Zhijie; Zhang, Weifeng; Wang, Zhangguo; Lei, Yong

Source:SMALL Article Number:2104623 DOI:10.1002/smll.202104623

Abstract: Fused-ring electron donors boost the efficiency of organic solar cells (OSCs), but they suffer from high cost and low yield for their large synthetic complexity (SC > 30%). Herein, the authors develop a series of simple non-fused-ring electron donors, PF1 and PF2, which alternately consist of furan-3-carboxylate and 2,2 '-bithiophene. Note that PF1 and PF2 present very small SC of 9.7% for their inexpensive raw materials, facile synthesis, and high synthetic yield. Compared to their all-thiophene-backbone counterpart PT-E, two new polymers feature larger conjugated plane, resulting in higher hole mobility for them, especially a value up to approximate to 10(-4) cm(2) V-1 center dot s for PF2 with longer alkyl side chain. Meanwhile, PF1 and PF2 exhibit larger dielectric constant and deeper electronic energy level versus PT-E. Benefiting from the better physicochemical properties, the efficiencies of PF1- and PF2-based devices are improved by approximate to 16.7% and approximate to 71.3% relative to that PT-E-based devices, respectively. Furthermore, the optimized PF2-based devices with introducing PC71BM as the third component deliver a higher efficiency of 12.40%. The work not only indicates that furan-3-carboxylate is a simple yet efficient building block for constructing non-fused-ring polymers but also provides a promising electron donor PF2 for the low-cost production of OSCs.

Accession Number:WOS:000722943700001

ISSN: 1613-6810

eISSN: 1613-6829

Full Text: https://onlinelibrary.wiley.com/doi/10.1002/smll.202104623

 

 

 

 



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明