A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Bandwidth superposition of linearly chirped microwave waveforms based on a Fourier domain mode-locked optoelectronic oscillator

2021-11-25

 

Author(s): Li, GZ (Li, Guozheng); Hao, TF (Hao, Tengfei); Li, W (Li, Wei); Li, M (Li, Ming)

Source: OPTICS EXPRESS Volume: 29 Issue: 22 Pages: 36977-36987 DOI: 10.1364/OE.442723 Published: OCT 25 2021

Abstract: Optoelectronic oscillators (OEOs) are promising for radar, communication and electronic countermeasure systems. Among them, frequency-scanning OEOs with wide instantaneous bandwidth are needed for many advanced applications. In this work, we demonstrate a novel system to generate bandwidth-doubled linearly chirped microwave waveforms (LCMWs) based on bandwidth superposition using a Fourier domain mode-locked OEO (FDML OEO). In the proposed system, bandwidth-doubling is achieved by re-modulating the generated LCMW of the FDML OEO onto a frequency-scanning optical carrier signal with the help of an external Mach-Zehnder modulator. LCMWs with wide frequency scanning instantaneous bandwidth of 10 GHz are experimentally obtained. Meanwhile, these LCMWs are tunable in an ultra-wide frequency range from 1 to 39 GHz. Moreover, they are with high frequency sweep linearity of 0.5%. Our work presents a simple method to generate tunable wide-band LCMWs for potential microwave sources. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Accession Number: WOS:000710928500158

PubMed ID: 34809095

ISSN: 1094-4087

Full Text: https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-29-22-36977&id=462438



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明