A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Stepped upper waveguide layer for higher hole injection efficiency in GaN-based laser diodes

2021-11-04

 

Author(s): Hou, YF (Hou, Yufei); Zhao, DG (Zhao, Degang); Chen, P (Chen, Ping); Liang, F (Liang, Feng); Liu, ZS (Liu, Zongshun); Yang, J (Yang, Jing)

Source: OPTICS EXPRESS Volume: 29 Issue: 21 Pages: 33992-34001 DOI: 10.1364/OE.435062 Published: OCT 11 2021

Abstract: We propose a stepped upper waveguide layer (UWG) to improve the hole injection efficiency of GaN-based laser diodes (LDs), and investigate its effect on the performance of LDs from experiments and theoretical calculations. The experimental characterization of the LD with stepped UWG presents a decrease of 16.6% for the threshold current as well as an increase of 41.2% for the slope efficiency compared to the LD with conventional GaN UWG. Meanwhile, strong localized effects are found in the quantum wells of LD with stepped UWG and a large blue-shift in the electroluminescence (EL) spectra below the threshold by analyzing the differential efficiency and the EL spectra. The large blue shift implies a stronger polarization field in the LDs, which may affect the injection of holes. Additionally, the simulation results demonstrate that the LD with stepped UWG achieves higher hole injection efficiency by modulating the valence band, and the hole current density injected into the quantum wells reaches 6067 A/cm(2). (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Accession Number: WOS:000708940500101

ISSN: 1094-4087

Full Text: https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-29-21-33992&id=460149



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明