A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

High spectral purity GaSb-based blazed grating external cavity laser with tunable single-mode operation around 1940nm

2021-11-04

 

Author(s): Wang, TF (Wang, Tianfang); Yang, CG (Yang, Chengao); Zhang, Y (Zhang, Yi); Chen, YH (Chen, Yihang); Shang, JM (Shang, Jinming); Zhang, Y (Zhang, Yu); Xu, YQ (Xu, Yingqiang); Niu, ZC (Niu, Zhichuan)

Source: OPTICS EXPRESS Volume: 29 Issue: 21 Pages: 33864-33873 DOI: 10.1364/OE.439255 Published: OCT 11 2021

Abstract: In this article, we present a tunable GaSb-based blazed grating external cavity laser (BG-ECL) with high spectral purity and high output power single-mode operation around 1940nm. The drastic increase in spectral selectivity and optical power results from the employment of a single-transverse-mode operating narrow ridge waveguide laser diode with an optimized AR coating on the front facet. The stable fundamental spatial mode output beam from the laser diode enables efficient collimation and high coupling efficiency with the blazed grating, leading to stronger wavelength-selective feedback. The AR coating with proper low reflectivity on the straight waveguide effectively suppresses the internal cavity mode lasing without causing extra optical loss. As a result, the BG-ECL device exhibits excellent comprehensive performance with a side mode suppression ratio (SMSR) over 50dB with optical power exceeding 30 mW within a 70 nm tuning range. A maximum SMSR of 56.26 dB with 35.12 mW output power was observed in continuous-wave operation. By increasing the working temperature of the diode laser, the tuning range can be further extended to over 100 nm without noticeable degradation in spectral and output power performance. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Accession Number: WOS:000708940500092

ISSN: 1094-4087

Full Text: https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-29-21-33864&id=460103



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明