A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Improving the Performance of Individually Calibrated SSVEP-BCI by Task- Discriminant Component Analysis

2021-10-14

 

Author(s): Liu, Bingchuan; Chen, Xiaogang; Shi, Nanlin; Wang, Yijun; Gao, Shangkai; Gao, Xiaorong

Source:IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING Volume:29 Page:1998 - 2007 DOI:10.1109/TNSRE.2021.3114340 Published: 2021

Abstract: A brain-computer interface (BCI) provides a direct communication channel between a brain and an external device. Steady-state visual evoked potential based BCI (SSVEP-BCI) has received increasing attention due to its high information transfer rate, which is accomplished by individual calibration for frequency recognition. Task-related component analysis (TRCA) is a recent and state-of-the-art method for individually calibrated SSVEP-BCIs. However, in TRCA, the spatial filter learned from each stimulus may be redundant and temporal information is not fully utilized. To address this issue, this paper proposes a novel method, i.e., task-discriminant component analysis (TDCA), to further improve the performance of individually calibrated SSVEP-BCI. The performance of TDCA was evaluated by two publicly available benchmark datasets, and the results demonstrated that TDCA outperformed ensemble TRCA and other competing methods by a significant margin. An offline and online experiment testing 12 subjects further validated the effectiveness of TDCA. The present study provides a new perspective for designing decoding methods in individually calibrated SSVEP-BCI and presents insight for its implementation in high-speed brain speller applications.

Accession Number:WOS:000702549900004

ISSN: 1534-4320

eISSN: 1558-0210

Full Text: https://ieeexplore.ieee.org/document/9541393



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明