A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Chirped Microwave Signals Generation Using a Distributed Feedback Laser With Alternating Structure of Active- and Passive-Cavity

2021-10-08

 

Author(s): Xu, CD (Xu, Changda); Jin, Y (Jin, Ya); Wang, J (Wang, Jian); Sun, WH (Sun, Wenhui); Xiong, LM (Xiong, Liangming); Chen, YF (Chen, Yinfang); Chen, W (Chen, Wei); Zhu, NH (Zhu, Ninghua)

Source: IEEE PHOTONICS JOURNAL Volume: 13 Issue: 4 Article Number: 1500906 DOI: 10.1109/JPHOT.2021.3103008 Published: AUG 2021

Abstract: We proposed a new type of distributed feedback laser with alternating active- and passive-cavities (APC DFB), which enjoys the same quantum well layer where the butt-joint re-growth process can be avoided. By utilizing the chirp characteristics of the APC DFB laser in a delayed self-heterodyne system, a chirped microwave signal with a sweep range up to 40 GHz and a sweep period of 25 mu s is generated. The power fluctuation of the generated signal between 0-40 GHz within 30 minutes does not exceed 3 dB, and the scanning range fluctuates about 600 MHz. And experiment results show that the thermal efficiency of the current is always related to the working environment. In the static wavelength measurement, it is controlled by the injection current; when the chirped signal is generated, it is determined by the bias current. In particular, the waveform and the period as well as the sweep range of the generated chirped microwave signals can be accurately tuned by adjusting the modulating current, which has provided a deeper insight into the photonic generation of microwave signals.

Accession Number: WOS:000698686800001

ISSN: 1943-0655

eISSN: 1943-0647

Full Text: https://ieeexplore.ieee.org/document/9511157



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明