A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

3D human pose estimation in motion based on multi-stage regression

2021-09-30

 

Author(s): Zhang, YT (Zhang, Yongtao); Li, S (Li, Shuang); Long, P (Long, Peng)

Source: DISPLAYS Volume: 69 Article Number: 102067 DOI: 10.1016/j.displa.2021.102067 Published: SEP 2021

Abstract: 3D human pose estimation in motion is a hot research direction in the field of computer vision. However, the performance of the algorithm is affected by the complexity of 3D spatial information, self-occlusion of human body, mapping uncertainty and other problems. In this paper, we propose a 3D human joint localization method based on multi-stage regression depth network and 2D to 3D point mapping algorithm. First of all, we use a single RGB image as the input, through the introduction of heatmap and multi-stage regression to constantly optimize the coordinates of human joint points. Then we input the 2D joint points into the mapping network for calculation, and get the coordinates of 3D human body joint points, and then to complete the 3D human body pose estimation task. The MPJPE of the algorithm in Human3.6 M dataset is 40.7. The evaluation of dataset shows that our method has obvious advantages.

Accession Number: WOS:000696991700003

ISSN: 0141-9382

eISSN: 1872-7387

Full Text: https://www.sciencedirect.com/science/article/pii/S0141938221000779?via%3Dihub



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明