A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Strain drived band aligment transition of the ferromagnetic VS2/C3N van derWaals heterostructure*

2021-09-30

 

Author(s): Shang, JM (Shang, Jimin); Qiao, S (Qiao, Shuai); Fang, JZ (Fang, Jingzhi); Wen, HY (Wen, Hongyu); Wei, ZM (Wei, Zhongming)

Source: CHINESE PHYSICS B Volume: 30 Issue: 9 Article Number: 097507 DOI: 10.1088/1674-1056/ac0cd1 Published: SEP 2021

Abstract: Exploring two-dimensional (2D) magnetic heterostructures is essential for future spintronic and optoelectronic devices. Herein, using first-principle calculations, stable ferromagnetic ordering and colorful electronic properties are established by constructing the VS2/C3N van der Waals (vdW) heterostructure. Unlike the semiconductive properties with indirect band gaps in both the VS2 and C3N monolayers, our results indicate that a direct band gap with type-II band alignment and p-doping characters are realized in the spin-up channel of the VS2/C3N heterostructure, and a typical type-III band alignment with a broken-gap in the spin-down channel. Furthermore, the band alignments in the two spin channels can be effectively tuned by applying tensile strain. An interchangement between the type-II and type-III band alignments occurs in the two spin channels, as the tensile strain increases to 4%. The attractive magnetic properties and the unique band alignments could be useful for prospective applications in the next-generation tunneling devices and spintronic devices.

Accession Number: WOS:000698472900001

ISSN: 1674-1056

eISSN: 2058-3834

Full Text: https://iopscience.iop.org/article/10.1088/1674-1056/ac0cd1



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明