A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

High-Q Fano Resonance in Subwavelength Stub-Wall-Coupled MDM Waveguide Structure and Its Terahertz Sensing Application

2021-09-23

 

Author(s): Li, MP (Li, Meiping); Shi, YP (Shi, Yanpeng); Liu, XY (Liu, Xiaoyu); Song, JM (Song, Jinmei); Zhang, YF (Zhang, Yifei); Wang, XD (Wang, Xiaodong); Yang, FH (Yang, Fuhua)

Source: IEEE ACCESS Volume: 9 Pages: 123939-123949 DOI: 10.1109/ACCESS.2021.3110512 Published: 2021

Abstract: Waveguide structures effectively controlling and guiding terahertz (THz) waves can achieve interesting resonance effects when combined with resonators. At present, achieving high quality factor (Q-factor) resonance in THz resonator-coupled waveguide structure is still a critical consideration to expand its practical application. Here, a high Q-factor Fano resonance based on a metal-dielectric-metal (MDM) waveguide consisting of a stub resonator and a metal wall with an aperture in the center is investigated theoretically and numerically in the THz region. The results show that the sharp and asymmetric Fano resonance peak is induced by the destructive interference between the stub resonator and metal wall which act as a Fabry-Perot cavity. Q-factor is obviously improved about 60 times (3.72 to similar to 225) by introducing the metal wall into the stub-coupled MDM waveguide. Moreover, Fano resonance can be effectively tuned by varying different structure parameters. Owing to the high sensitivity of Fano resonance peak to dielectric surroundings, a large-range refractive index (RI) sensor based on the proposed structure with a high sensitivity of 96480 nm/RIU is obtained. The figure of merit (FOM) of 195 is greatly improved compared to other THz Fano-based RI sensors. These results provide possibilities for subwavelength MDM waveguide structure to apply for THz bio/chemical sensing, bandpass filters, and on-chip highly integrated plasmonic device.

Accession Number: WOS:000696059500001

ISSN: 2169-3536

Full Text: https://ieeexplore.ieee.org/document/9530392



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明