A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Rewritable PEDOT Film Based on Water-Writing and Electroerasing

2021-09-23

 

Author(s): Wu, PP (Wu, Pingping); Wei, CR (Wei, Chunrong); Yang, WJ (Yang, Wenjie); Lin, LN (Lin, Longnian); Pei, WH (Pei, Weihua); Wang, JX (Wang, Jingxia); Jiang, L (Jiang, Lei)

Source: ACS APPLIED MATERIALS & INTERFACES Volume: 13 Issue: 34 Pages: 41220-41230 DOI: 10.1021/acsami.1c09531 Published: SEP 1 2021

Abstract: Rewritable paper has greatly promoted the sustainable development of society. However, the hydrophilicity/lipophilicity of the poly(3,4-ethylenedioxythiophene) (PEDOT) film limits its application as the rewritable paper. Herein, we constructed a repeatable writing/erasing pattern on a PEDOT film (rewritable PEDOT paper) by combining wettability control, water-induced dedoping, and an electrochemical redox reaction. The treatment with a mediumpolarity/high-volatility solvent (MP/HVS) adjusted the wettability of the PEDOT film (water contact angle increased from 6.5 degrees to 146.2 degrees), contributing to the formation of a hydrophobic writable substrate. The treatment with a high-polarity solvent (HPS) induced the dedoping of anions in the PEDOT chain, resulting in the film's color changed from blue to purple and serving as a writing process. The intrinsic electrochemical redox (elimination of color change by doping/dedoping of lithium ions in the PEDOT chain) of the PEDOT film enabled the erasing process. This writing/erasing process can be repeated at least 10 times. The patterned PEDOT film maintained excellent stability to standing diverse solvents (low-polarity solvent (LPS) and MP/HVS), high temperatures (350 degrees C), and irradiation of different light wavelengths (wavelengths of 365, 380, 460, 520, and 645 nm). Additionally, the conductivity of the PEDOT film was quantitatively measured (impedance: LPS, increased 8.84%; MP/HVS, decreased 6.67%; and HPS, increased 27.97%) by fabricating a micropatterned PEDOT electrode. This work will provide a method for the fabrication of PEDOT-based optoelectronic functional materials.

Accession Number: WOS:000693050200101

PubMed ID: 34410101

ISSN: 1944-8244

eISSN: 1944-8252

Full Text: https://pubs.acs.org/doi/10.1021/acsami.1c09531



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明