A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Superior tunable photocatalytic properties for water splitting in two dimensional GeC/SiC van der Waals heterobilayers

2021-09-23

 

Author(s): Islam, MR (Islam, Md Rasidul); Islam, MS (Islam, Md Sherajul); Mitul, A (Mitul, Abu Farzan); Mojumder, MRH (Mojumder, Md Rayid Hasan); Islam, ASMJ (Islam, A. S. M. Jannatul); Stampfl, C (Stampfl, Catherine); Park, J (Park, Jeongwon)

Source: SCIENTIFIC REPORTS Volume: 11 Issue: 1 Article Number: 17739 DOI: 10.1038/s41598-021-97251-1 Published: SEP 6 2021

Abstract: The photocatalytic characteristics of two-dimensional (2D) GeC-based van der Waals heterobilayers (vdW-HBL) are systematically investigated to determine the amount of hydrogen (H-2) fuel generated by water splitting. We propose several vdW-HBL structures consisting of 2D-GeC and 2D-SiC with exceptional and tunable optoelectronic properties. The structures exhibit a negative interlayer binding energy and non-negative phonon frequencies, showing that the structures are dynamically stable. The electronic properties of the HBLs depend on the stacking configuration, where the HBLs exhibit direct bandgap values of 1.978 eV, 2.278 eV, and 2.686 eV. The measured absorption coefficients for the HBLs are over similar to 10(5) cm(-1), surpassing the prevalent conversion efficiency of optoelectronic materials. In the absence of external strain, the absorption coefficient for the HBLs reaches around 1 x 10(6) cm(-1). With applied strain, absorption peaks are increased to similar to 3.5 times greater in value than the unstrained HBLs. Furthermore, the HBLs exhibit dynamically controllable bandgaps via the application of biaxial strain. A decrease in the bandgap occurs for both the HBLs when applied biaxial strain changes from the compressive to tensile strain. For + 4% tensile strain, the structure I become unsuitable for photocatalytic water splitting. However, in the biaxial strain range of - 6% to + 6%, both structure II and structure III have a sufficiently higher kinetic potential for demonstrating photocatalytic watersplitting activity in the region of UV to the visible in the light spectrum. These promising properties obtained for the GeC/SiC vdW heterobilayers suggest an application of the structures could boost H-2 fuel production via water splitting.

Accession Number: WOS:000694653700041

PubMed ID: 34489541

Author Identifiers:

Author        Web of Science ResearcherID        ORCID Number

Islam, Md. Sherajul                  0000-0002-6717-2523

ISSN: 2045-2322

Full Text: https://www.nature.com/articles/s41598-021-97251-1



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明