A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Wearable Flexible Phototherapy Device for Knee Osteoarthritis

2021-09-09

 

Author(s): Liu, K (Liu, Kun); Chen, HD (Chen, Hongda); Wang, YG (Wang, Yuguang); Wang, MQ (Wang, Mengqi); Tang, J (Tang, Jun)

Source: ELECTRONICS Volume: 10 Issue: 16 Article Number: 1891 DOI: 10.3390/electronics10161891 Published: AUG 2021

Abstract: Knee osteoarthritis (OA) is a highly prevalent and disabling disease that causes pain and gradual degeneration of the articular cartilage. Phototherapy is a new physiotherapy treatment, more effective and stable than other non-pharmacologic management. Conventional phototherapy devices typically suffer from unintelligent and bulky equipment, while existing phototherapy methods require maintain a certain phototherapy distance. Here, we introduce a wearable flexible phototherapy device worn on a knee for osteoarthritis, incorporating a phototherapy adhesive patch and a control box. The phototherapy adhesive patch is capable of softly laminating onto the curved surfaces of the knee skin to increase the effects of phototherapy. We describe the LED array, constant current drive module, key control module, and power supply module that serve as the foundations for the control box. The weight of the device is only 101.8 g. The irradiance of the device can be adjusted linearly and irradiance of the designed phototherapy device based on LED can reach 13 mW/cm(2). The maximum temperature of the surface of the light source is 31.2 degrees C. The device proposed in this work exhibits satisfactory stability, promising a potential in phototherapy.

Accession Number: WOS:000688976300001

eISSN: 2079-9292

Full Text: https://www.mdpi.com/2079-9292/10/16/1891



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明