A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Performance-enhanced and cost-effective triboelectric nanogenerator based on stretchable electrode for wearable SpO2 monitoring

2021-08-26

 

Author(s): Chen, HM (Chen, Huamin); Yang, W (Yang, Wei); Zhang, C (Zhang, Cheng); Wu, MQ (Wu, Mingqiang); Li, WJ (Li, Wenjie); Zou, YX (Zou, Yuxiao); Lv, LF (Lv, Longfeng); Yu, HL (Yu, Hualiang); Ke, HZ (Ke, Huizhen); Liu, RP (Liu, Ruping); Xu, Y (Xu, Yun); Wang, J (Wang, Jun); Li, Z (Li, Zhou)

Source: NANO RESEARCH DOI: 10.1007/s12274-021-3724-1 Early Access Date: AUG 2021

Abstract: Recently, stretchable and wearable health monitoring equipment has greatly improved human's daily life, which sets higher demands for portable power source in stretchability, sustainability, and biocompatibility. In this work, we proposed a stretchable triboelectric nanogenerator (TENG) based on stretchable poly (3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS)/porous carbon hybrid for oxyhemoglobin saturation (SpO2) monitoring. To combine advantages of carbon material for its high conductivity and organic electrode for its high stretchability, we spin-coated a solution of PEDOT:PSS/porous carbon onto a plasma-treated pre-stretched Ecoflex film to fabricate a stretchable electrode with rough surface. Due to its roughness and high potential difference with the dielectric material, the stretchable-electrode-based TENG exhibited better performance compared to the pristine TENG based on carbon or PEDOT:PSS material. The output voltage and current reached up to 51.5 V and 13.2 mu A as the carbon concentration increased. More importantly, the performance further increased under large strain (100%) which is suitable for wearable systems. Finally, the device demonstrated its application potential for powering a flexible blood oxygen monitor. This simple and cost-effective method can enhance the stretchability and stability of organic/inorganic electrode-based TENG, which paves the development of high-performance stretchable TENG.

Accession Number: WOS:000684526800005

ISSN: 1998-0124

eISSN: 1998-0000

Full Text: https://link.springer.com/article/10.1007%2Fs12274-021-3724-1



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明