A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Maximizing spin-orbit torque generated by the spin Hall effect of Pt

2021-08-26

 

Author(s): Zhu, LJ (Zhu, Lijun); Ralph, DC (Ralph, Daniel C.); Buhrman, RA (Buhrman, Robert A.)

Source: APPLIED PHYSICS REVIEWS Volume: 8 Issue: 3 Article Number: 031308 DOI: 10.1063/5.0059171 Published: SEP 2021

Abstract: Efficient generation of spin-orbit torques is central for the exciting field of spin-orbitronics. Platinum, the archetypal spin Hall material, has the potential to be an outstanding provider for spin-orbit torques due to its giant spin Hall conductivity, low resistivity, high stabilities, and the ability to be compatible with CMOS circuits. However, pure clean-limit Pt with low resistivity still provides a low damping-like spin-orbit torque efficiency, which limits its practical applications. The efficiency of spin-orbit torque in Pt-based magnetic heterostructures can be improved considerably by increasing the spin Hall ratio of Pt and the spin transmissivity of the interfaces. Here we review recent advances in understanding the physics of spin current generation, interfacial spin transport, and the metrology of spin-orbit torques and summarize progress toward the goal of Pt-based spin-orbit torque memories and logic that are fast, efficient, reliable, scalable, and nonvolatile.

Accession Number: WOS:000684666600001

ISSN: 1931-9401

Full Text: https://aip.scitation.org/doi/10.1063/5.0059171



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明