A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Directly transfer-printing tailored micro-supercapacitors

2021-08-19

 

Author(s): Lu, Y (Lu, Yao); Li, L (Li, La); Wang, XD (Wang, Xiaodan); Chen, D (Chen, Di)

Source: MATERIALS TODAY COMMUNICATIONS Volume: 27 Article Number: 102342 DOI: 10.1016/j.mtcomm.2021.102342 Published: JUN 2021

Abstract: The emergence of smart electronics, bionic electronic skin and internet of things (IOT) inspires the relentless pursuit of advanced power source with versatile structures. Herein, we presented a cost-effective and industrially applicable transfer-printing method to directly fabricate micro-supercapacitors (MSCs) based on active carbon electrodes on various substrates. The fabricated individual MSC on PET substrate delivered a power density of 66.5 mu W.cm(-2) and a high output capacitance of 0.32 mF.cm(-2). Notably, the output of voltage and capacitance could be readily tailored through directly transfer-printing MSC arrays with tandem and parallel connection fashions, respectively. In addition, aesthetically diverse MSCs on various substrates including medical film, cotton cloth and glass piece were further realized easily. Finally, some simple wearable electrics such as the dragon-patterned MSCs powered tattoo and cultural T-shirt as well as the flower-patterned MSCs powered smart cup were fabricated for the practical applications. Thus, transfer-printing technique can be effectively used to develop the fabrication of MSCs as unprecedented object-tailored power sources.

Accession Number: WOS:000683025200002

eISSN: 2352-4928

Full Text: https://www.sciencedirect.com/science/article/pii/S2352492821003342?via%3Dihub



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明