A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Aberrant Temporal Variability in Brain Regions during Risk Decision Making in Patients with Bipolar I Disorder: A Dynamic Effective Connectivity Study

2021-08-18

 

Author(s): Ji, Shanling; Ma, Hongxia; Yao, Mengyuan; Guo, Man; Li, Shan; Chen, Nan; Liu, Xia; Shao, Xuexiao; Yao, Zhijun; Hu, Bin

Source: NEUROSCIENCE Volume: 469 Pages: 68-78 DOI: 10.1016/j.neuroscience.2021.06.024 Published: AUG 10 2021

Abstract: I disorder (BD-I) is associated with high-risk behaviors, such as suicide attempts and addictive substance abuse. Understanding brain activity exposure to risk decision making provides evidence for the treatment of BD-I patients. This study aimed to investigate the temporal dynamics of brain connectivity underlying risk decision making in patients with BD-I. A total of 101 subjects (48 BD-I patients and 53 age-and gender-matched healthy controls (HCs)) were included in this research. We analyzed the fMRI data acquired during Balloon Analog Risk Task (BART) performance. Voxel-wise dynamic effective connectivity (dEC) was employed to measure the activities in 264 brain regions. The coefficient of variation (CV) was calculated as temporal dynamics of brain connectivity. Finally, we used structural equation modeling (SEM) to determine the relationships of dEC in brain regions with clinical symptoms, behavior performances in patients. Results showed that BD-I patients exhibited increased dynamics in four lobes and exhibited decreased in three frontal regions. Besides, SEM results showed that the impulsive symptoms of patients were affected by the dEC during both resting and task states. Moreover, the dEC of left supramarginal gyrus (SMG) influenced those of left orbital frontal and right cuneus (CUN), as well as the affective symptoms and BART behaviors in patients with BD-I. Our results suggested that the altered temporal dynamics of brain connectivity might contribute to the impulsivity of BD-I during resting and task states. More importantly, the left SMG might be a therapeutic target to reduce the risk behavior in BD-I patients. (c) 2021 IBRO. Published by Elsevier Ltd. All rights reserved.

Accession Number: WOS:000677679400006

ISSN: 0306-4522

eISSN: 1873-7544

Full Text: https://www.sciencedirect.com/science/article/pii/S0306452221003237?via%3Dihub



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明