A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Hydrothermal synthesis of N, P co-doped graphene quantum dots for high-performance Fe3+ detection and bioimaging

2021-08-16

 

Author(s): Yang, Yongsheng; Gu, Bingli; Liu, Zhiduo; Chen, Da; Zhao, Yun; Guo, Qinglei; Wang, Gang

Source: JOURNAL OF NANOPARTICLE RESEARCH Volume: 23 Issue: 2 Article Number: 40 DOI: 10.1007/s11051-021-05154-z Published: FEB 2021

Abstract: Doped carbon-based materials have attracted considerable attentions due to their extraordinary optical, thermal, and electronic properties. Herein, we demonstrate a facile and universal approach, which involves the hydrothermal treatment of citric acid and phosphonitrilic chloride trimer (Cl6N3P3), for the production of nitrogen and phosphorus co-doped graphene quantum dots (N, P-GQDs). The obtained N, P-GQDs with a mean size of about 3.4 nm exhibit bright yellow fluorescence, good-solubility, and attractive optical stability. Although the quantum yield as high as 34.8% has been proved in our synthesized N, P-GQDs, the fluorescence can be also fleetly and selectively quenched by Fe3+ ions. Therefore, high-performance Fe3+ sensors are fabricated with N, P-GQDs, with an ultra-sensitive detection limit of 146 nM. Furthermore, high ionic strength, mild acids, and alkaline are demonstrated to have a small impact on the fluorescence intensity of the N, P-GQDs. Finally, the as-synthesized N, P-GQDs, with bright luminescence and excellent biocompatibility, are applied for bioimaging, e.g., fibroblast cells.

Accession Number: WOS:000615138900006

ISSN: 1388-0764

eISSN: 1572-896X

Full Text: https://link.springer.com/article/10.1007%2Fs11051-021-05154-z



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明