A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

High-speed serial deep learning through temporal optical neurons

2021-07-22

 

Author(s): Lin, ZX (Lin, Zhixing); Sun, SQ (Sun, Shuqian); Azana, J (Azana, Jose); Li, W (Li, Wei); Li, M (Li, Ming)

Source: OPTICS EXPRESS Volume: 29 Issue: 13 Pages: 19392-19402 DOI: 10.1364/OE.423670 Published: JUN 21 2021

Abstract: Deep learning is able to functionally mimic the human brain and thus, it has attracted considerable recent interest. Optics-assisted deep learning is a promising approach to improve forward-propagation speed and reduce the power consumption of electronic-assisted techniques. However, present methods are based on a parallel processing approach that is inherently ineffective in dealing with the serial data signals at the core of information and communication technologies. Here, we propose and demonstrate a sequential optical deep learning concept that is specifically designed to directly process high-speed serial data. By utilizing ultra-short optical pulses as the information carriers, the neurons are distributed at different time slots in a serial pattern, and interconnected to each other through group delay dispersion. A 4-layer serial optical neural network (SONN) was constructed and trained for classification of both analog and digital signals with simulated accuracy rates of over 79.2% with proper individuality variance rates. Furthermore, we performed a proof-of-concept experiment of a pseudo-3-layer SONN to successfully recognize the ASCII codes of English letters at a data rate of 12 gigabits per second. This concept represents a novel one-dimensional realization of artificial neural networks, enabling a direct application of optical deep learning methods to the analysis and processing of serial data signals, while offering a new overall perspective for temporal signal processing. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Accession Number: WOS:000664025900014

PubMed ID: 34266049

ISSN: 1094-4087

Full Text: https://pubs.acs.org/doi/10.1021/acsaelm.1c00248



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明