A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Dynamic Markov Model: Password Guessing Using Probability Adjustment Method

2021-07-09

 

Author(s): Guo, XZ (Guo, Xiaozhou); Liu, Y (Liu, Yi); Tan, KJ (Tan, Kaijun); Mao, WY (Mao, Wenyu); Jin, M (Jin, Min); Lu, HX (Lu, Huaxiang)

Source: APPLIED SCIENCES-BASEL Volume: 11 Issue: 10 Article Number: 4607 DOI: 10.3390/app11104607 Published: MAY 2021

Abstract: In password guessing, the Markov model is still widely used due to its simple structure and fast inference speed. However, the Markov model based on random sampling to generate passwords has the problem of a high repetition rate, which leads to a low cover rate. The model based on enumeration has a lower cover rate for high-probability passwords, and it is a deterministic algorithm that always generates the same passwords in the same order, making it vulnerable to attack. We design a dynamic distribution mechanism based on the random sampling method. This mechanism enables the probability distribution of passwords to be dynamically adjusted and tend toward uniform distribution strictly during the generation process. We apply the dynamic distribution mechanism to the Markov model and propose a dynamic Markov model. Through comparative experiments on the RockYou dataset, we set the optimal adjustment degree alpha. Compared with the Markov model without the dynamic distribution mechanism, the dynamic Markov model reduced the repetition rate from 75.88% to 66.50% and increased the cover rate from 37.65% to 43.49%. In addition, the dynamic Markov model had the highest cover rate for high-probability passwords. Finally, the model avoided the lack of a deterministic algorithm, and when it was run five times, it reached almost the same cover rate as OMEN.

Accession Number: WOS:000662502100001

eISSN: 2076-3417

Full Text: https://www.mdpi.com/2076-3417/11/10/4607



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明