A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Unveiling the Mechanism of Bulk Spin-Orbit Torques within Chemically Disordered FexPt1-x Single Layers

2021-07-09

 

Author(s): Zhu, LJ (Zhu, Lijun); Ralph, DC (Ralph, Daniel C.); Buhrman, RA (Buhrman, Robert A.)

Source: ADVANCED FUNCTIONAL MATERIALS Article Number: 2103898 DOI: 10.1002/adfm.202103898 Early Access Date: JUN 2021

Abstract: The recent discovery of spin-orbit torques (SOTs) within magnetic single-layers has attracted attention. However, it remains elusive as to how to understand and how to tune the SOTs. Here, utilizing the single layers of chemically disordered FexPt1-x, the mechanism of the "unexpected" bulk SOTs is unveiled by studying their dependence on the introduction of a controlled vertical composition gradient and temperature. The bulk dampinglike SOT is found to arise from an imbalanced internal spin current that is transversely polarized and independent of the magnetization orientation. The torque can be strong only in the presence of a vertical composition gradient. The SOT efficiency per electric field is insensitive to temperature but changes sign upon reversal of the orientation of the composition gradient, which is analog to the strain behaviors. These characteristics suggest that the imbalanced internal spin current originates from a bulk spin Hall effect and that the associated inversion asymmetry that allows for a non-zero net torque is most likely a strain non-uniformity induced by the composition gradient. The fieldlike SOT is a relatively small bulk effect compared to the dampinglike SOT. This study points to the possibility of developing low-power single-layer SOT devices by strain engineering.

Accession Number: WOS:000665083800001

ISSN: 1616-301X

eISSN: 1616-3028

Full Text: https://onlinelibrary.wiley.com/doi/10.1002/adfm.202103898



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明