A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Improved stability and efficiency of perovskite via a simple solid diffusion method

2021-07-02

 

Author(s): Wang, W (Wang, W.); Guo, R (Guo, R.); Xiong, X (Xiong, X.); Liu, H (Liu, H.); Chen, W (Chen, W.); Hu, S (Hu, S.); Amador, E (Amador, E.); Chen, B (Chen, B.); Zhang, X (Zhang, X.); Wang, L (Wang, L.)

Source: MATERIALS TODAY PHYSICS Volume: 18 Article Number: 100374 DOI: 10.1016/j.mtphys.2021.100374 Published: MAY 2021

Abstract: CsPbBr3 perovskite quantum dots (QDs) have excellent properties such as high emission quantum yield, adjustable spectrum, and wide color range. They have potential prospects in light-emitting diode (LED) displays and solar cells. However, CsPbBr3 QDs suffer from a low stability with a high sensitivity to water, heat, and light. Here, for the first time, we report a simple method to improve their stability using a high temperature solid state diffusion to synthesize highly stable and high-quality CsPbBr3 QDs in a small pore size LTA zeolite (0.41 nm). First, the mixture of PbBr2, CsBr and LTA zeolite was heated at 650 degrees C, and the raw materials PbBr2 and CsBr were diffused into the LTA zeolite through a small aperture. Then, the CsBr/ PbBr2 in the composite was reassembled into CsPbBr3 QDs (CsPbBr3@LTA) at room temperature. The CsPbBr3@LTA obtained by this synthesis method have a high photoluminescence quantum yield (PLQY similar to 66%) and extremely high stability. The PLQY of CsPbBr3@LTA remained above 66% after being kept in the air for 17 months. The PL intensity of CsPbBr3@LTA remained 78% of the initial value after being immersed in water for 554 days and the PL intensity changed insignificantly after laser irradiation for 20 days. (C) 2021 Elsevier Ltd. All rights reserved.

Accession Number: WOS:000663430100010

ISSN: 2542-5293

Full Text: https://www.sciencedirect.com/science/article/pii/S2542529321000353?via%3Dihub



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明