A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Strong influence of nonmagnetic ligands on the momentum-dependent spin splitting in antiferromagnets

2021-07-02

 

Author(s): Yuan, LD (Yuan, Lin-Ding); Wang, Z (Wang, Zhi); Luo, JW (Luo, Jun-Wei); Zunger, A (Zunger, Alex)

Source: PHYSICAL REVIEW B Volume: 103 Issue: 22 Article Number: 224410 DOI: 10.1103/PhysRevB.103.224410 Published: JUN 9 2021

Abstract: Recent studies show the nonrelativistic antiferromagnetic ordering could generate momentum-dependent spin splitting analogous to the Rashba effect but free from the requirement of relativistic spin-orbit coupling. Whereas the classification of such compounds can be illustrated by different spin-splitting prototypes (SSTs) from symmetry analysis and density-functional-theory calculations, the huge variation in chemical bonding and structures of these diverse compounds possibly clouds the issue of how much of the variation in spin splitting can be traced back to the symmetry-defined characteristics, rather to the underlining chemical and structural diversity. The alternative model Hamiltonian approaches do not confront the issues of chemical and structural complexity but often consider only the magnetic sublattice, dealing with the all-important effects of the nonmagnetic ligands via renormalizing the interactions between the magnetic sites. To this end, we constructed a DP1 model Hamiltonian that allows us to study SSTs at constant chemistry while retaining the realistic atomic-scale structure including ligands. This is accomplished by using a single, universal magnetic skeletal lattice (Ni2+ ions in rocksalt NiO) and designing small displacements of the nonmagnetic (oxygen) sublattice which produce, by design, the different SST magnetic symmetries. We show that (i) even similar crystal structures having very similar band structures can lead to contrasting behavior of spin splitting vs momentum, and (ii) even subtle deformations of the nonmagnetic ligand sublattice could cause a giant spin splitting in AFM-induced SST. This is a paradigm shift relative to the convention of modeling magnets without considering the nonmagnetic ligand that mediates indirect magnetic interaction (e.g., superexchange).

Accession Number: WOS:000661500000001

ISSN: 2469-9950

eISSN: 2469-9969

Full Text: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.224410



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明