A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Carrier-stabilized hexagonal Ge

2021-07-02

 

Author(s): Cai, XF (Cai, Xuefen); Deng, HX (Deng, Hui-Xiong); Wei, SH (Wei, Su-Huai)

Source: PHYSICAL REVIEW B Volume: 103 Issue: 24 Article Number: 245202 DOI: 10.1103/PhysRevB.103.245202 Published: JUN 10 2021

Abstract: Germanium is crystalized in the cubic diamond structure, but its high energy hexagonal Ge (lonsdaleite) phase has many novel properties such as direct band gap. Using first-principles calculations, we show that the hexagonal lonsdaleite phase of Ge can be stabilized by introducing carriers, either electrons or holes, because Ge in the cubic and hexagonal phases form a type-I band alignment with both electrons and holes localized at the hexagonal site. This result is distinct from that in zinc-blende compounds such as ZnSe, because due to the lack of inversion symmetry, the crystal-field splitting, zone folding, and symmetry-controlled level repulsion between valence and conduction band states lead to a type-II band alignment between its cubic and hexagonal phases, so the hexagonal (wurtzite) phase of ZnSe can only be stabilized, in principle, by holes. This distinction reveals that, due to the symmetry differences, the well-investigated understanding of band structure differences between zinc-blende and wurtzite phases should not be simply extended to that of diamond and lonsdaleite phases despite the remarkable structure resemblance between the two cases.

Accession Number: WOS:000661524600002

ISSN: 2469-9950

eISSN: 2469-9969

Full Text: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.103.245202



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明