A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Large bandwidth and high-efficiency plasmonic quarter-wave plate

2021-06-17

 

Author(s): Cheng, B (Cheng, Bo); Wang, L (Wang, Lei); Zou, YX (Zou, Yuxiao); Lv, LF (Lv, Longfeng); Li, CC (Li, Chuanchuan); Xu, Y (Xu, Yun); Song, GF (Song, Guofeng)

Source: OPTICS EXPRESS Volume: 29 Issue: 11 Pages: 16939-16949 DOI: 10.1364/OE.426006 Published: MAY 24 2021

Abstract: A large bandwidth and high-efficiency subwavelength quarter-wave plate (QWP) is an indispensable component of an integrated miniaturized optical system. The bandwidth of existing plasmonic quarter-wave plates with a transmission efficiency of more than 50% is less than 320 nm in the near-infrared band. In this paper, a metallic quarter-wave plate with a bandwidth of 600 nm (0.95-1.55 mu m) and an average transmittance of more than 70% has been designed and shows excellent potential to be used in miniaturized optical polarization detection systems and as an optical data storage device. For TE mode incident waves, this miniaturized optical element can be equivalent to a Fabry-Perot (FP) resonator. Meanwhile, for the TM mode incident wave, the transmission characteristics of this structure are controlled by gap surface plasmon polaritons (G-SPPs) existing in the symmetric metal/insulator/metal (MIM) configuration. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Accession Number: WOS:000654369300083

ISSN: 1094-4087

Full Text: https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-29-11-16939&id=451131



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明