A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Stress engineering for reducing the injection current induced blue shift in InGaN-based red light-emitting diodes

2021-04-25

 

Author(s): Yao, WZ (Yao, Weizhen); Wang, LS (Wang, Lianshan); Meng, YL (Meng, Yulin); Yang, SY (Yang, Shaoyan); Liu, XL (Liu, Xianglin); Niu, HD (Niu, Huidan); Wang, ZG (Wang, Zhanguo)

Source: CRYSTENGCOMM Volume: 23 Issue: 12 DOI: 10.1039/d0ce01769h Published: MAR 28 2021

Abstract: Long visible light-emitting diodes (LEDs) have been proven promising in solid-state lighting covering all visible wavelengths. However, the efficiency of LEDs with high indium content in InGaN multiple quantum wells (MQWs) substantially decreases in long wavelengths. Herein, we present the growth of a pre-strained InGaN layer and dual-wavelength LED structures on cone-shape-patterned sapphires by metal-organic chemical vapor deposition. V-pits can thus be formed within the pre-strained layer and red QWs due to the stress relaxation. This enhances the incorporation of indium in the InGaN/GaN MQWs so that red LEDs can be fabricated. Electroluminescence measurements on the dual-wavelength LED show a remarkable reduced blue shift in the emission wavelength with increasing the injection current, compared with that of the single-wavelength LEDs. This is attributed to the enhanced light emission from the red QWs with higher indium contents (deeper QWs). Additionally, photoluminescence measurements demonstrate that the red emission exhibits an increased luminescence intensity and higher thermal stability than the green emission when the temperature increased to room temperature. This study paves the avenue for improving the performance of the InGaN-based red LEDs by controlling the pre-strain in InGaN/GaN MQWs via stress engineering, thereby offering new perspectives for the design of high-quality long visible LEDs targeted for practical applications.

Accession Number: WOS:000634446300003

eISSN: 1466-8033

Full Text: https://pubs.rsc.org/en/content/articlelanding/2021/CE/D0CE01769H#!divAbstract



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明