A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Physical properties and structure characteristics of titanium-modified antimony-selenium phase change thin film

2021-04-23

 

Author(s): Wu, WH (Wu, Weihua); Sun, YM (Sun, Yuemei); Zhu, XQ (Zhu, Xiaoqin); Shen, B (Shen, Bo); Zhai, JW (Zhai, Jiwei); Yue, ZX (Yue, Zhenxing)

Source: APPLIED PHYSICS LETTERS Volume: 118 Issue: 8 Article Number: 081903 DOI: 10.1063/5.0024839 Published: FEB 22 2021

Abstract: Effects of the titanium dopant on the physical properties and structure of SbSe thin films were systematically investigated by experiments and first-principles calculations. The amorphous-to-polycrystalline transformation induced by heat was examined by in situ electrical resistance measurements. With the incorporation of titanium atoms, both the crystallization temperature and electrical resistance increase, revealing the improvement of the amorphous thermal stability and programing energy consumption. X-ray diffraction, transmission electron microscopy, and density functional theory calculations illustrate that a small amount of titanium dopant can inhibit the grain growth and refine the crystal size. The shift of Raman modes associated Sb upon the crystallization was observed. X-ray reflectivity and atomic force microscopy results prove the smaller volume fluctuation and the smoother surface morphology, meaning the better interfacial property and reliability of titanium-doped SbSe materials. Phase change memory cells based on titanium-doped antimony-selenium were fabricated to evaluate the electrical performance as well. All these results indicate that the suitable incorporation of the titanium element will be an effective method to optimize the physical properties and tune the structure of the SbSe phase change material.

Accession Number: WOS:000630400800002

Author Identifiers:

Author        Web of Science ResearcherID        ORCID Number

Zhai, Jiwei                  0000-0002-0020-3524

ISSN: 0003-6951

eISSN: 1077-3118

Full Text: https://aip.scitation.org/doi/10.1063/5.0024839



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明