A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

From high-quality semiconductor/superconductor nanowires to Majorana zero mode

2021-04-23

 

Author(s): Wen, LJ (Wen Lian-Jun); Pan, D (Pan Dong); Zhao, JH (Zhao Jian-Hua)

Source: ACTA PHYSICA SINICA Volume: 70 Issue: 5 Article Number: 058101 DOI: 10.7498/aps.70.20201750 Published: MAR 5 2021

Abstract: As the version of Majorana fermions in condensed matter physics, the research of Majorana zero modes is one of the most interesting topics in physics currently. Majorana zero modes obey the non-Abelian statistics and can be used for constructing the topologically protected qubits. This kind of qubit constructed from spatially separated Majorana zero modes is immune to local noise, and has a long decoherence time, which makes it show important application prospects in fault-tolerant quantum computation. The semiconductor/superconductor nanowires are one of the most ideal experimental platforms for studying Majorana zero modes and topological quantum computation. This work reviews the research progress of the epitaxial growth of high-quality semiconductor nanowires, the fabrication of semiconductor/superconductor heterostructure nanowires, and Majorana zero modes in semiconductor/superconductor nanowires. The application prospects of semiconductor/superconductor nanowires in quantum computation is also prospected finally.

Accession Number: WOS:000627119400034

ISSN: 1000-3290

Full Text: http://wulixb.iphy.ac.cn/article/doi/10.7498/aps.70.20201750



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明