A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Perovskite Light-Emitting Diodes with External Quantum Efficiency Exceeding 22% via Small-Molecule Passivation

2021-04-23

 

Author(s): Chu, ZM (Chu, Zema); Ye, QF (Ye, Qiufeng); Zhao, Y (Zhao, Yang); Ma, F (Ma, Fei); Yin, ZG (Yin, Zhigang); Zhang, XW (Zhang, Xingwang); You, JB (You, Jingbi)

Source: ADVANCED MATERIALS Article Number: 2007169 DOI: 10.1002/adma.202007169 Early Access Date: APR 2021

Abstract: Perovskite light-emitting diodes (PeLEDs) are considered as particularly attractive candidates for high-quality lighting and displays, due to possessing the features of wide gamut and real color expression. However, most PeLEDs are made from polycrystalline perovskite films that contain a high concentration of defects, including point and extended imperfections. Reducing and mitigating non-radiative recombination defects in perovskite materials are still crucial prerequisites for achieving high performance in light-emitting applications. Here, ethoxylated trimethylolpropane triacrylate (ETPTA) is introduced as a functional additive dissolved in antisolvent to passivate surface and bulk defects during the spinning process. The ETPTA can effectively decrease the charge trapping states by passivation and/or suppression of defects. Eventually, the perovskite films that are sufficiently passivated by ETPTA make the devices achieve a maximum external quantum efficiency (EQE) of 22.49%. To our knowledge, these are the most efficient green PeLEDs up to now. In addition, a threefold increase in the T-50 operational time of the devices was observed, compared to control samples. These findings provide a simple and effective strategy to make highly efficient perovskite polycrystalline films and their optoelectronics devices.

Accession Number: WOS:000635826500001

PubMed ID: 33797133

Author Identifiers:

Author        Web of Science ResearcherID        ORCID Number

You, Jingbi         A-2941-2011         0000-0002-4651-9081

ISSN: 0935-9648

eISSN: 1521-4095

Full Text: https://onlinelibrary.wiley.com/doi/10.1002/adma.202007169



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明