A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Robust tunable plasmon induced transparency in coupled-resonance finite array of metasurface nanostructure

2021-03-25

 

Author(s): Liu, JT (Liu, Jie-Tao); Liu, Z (Liu, Zhi)

Source: SCIENTIFIC REPORTS Volume: 11 Issue: 1 Article Number: 1221 DOI: 10.1038/s41598-020-78795-0 Published: JAN 13 2021

Abstract: Robust and dynamically polarization-controlled tunable plasmon induced transparency (PIT) resonance in designed finite-array nanostructures metasurface is demonstrated, where sharp resonance is guaranteed by design and protected against large geometrical imperfections even for micro-zone sub-array. By employing the explicit analysis of near-field characteristic in the reciprocal-space based on the momentum matching, and the far-field radiation features with point-scattering approach in real-space sparked from Huygens's principles, the physics of interference resonance for plane-wave optical transmission and reflection of the metasurface is theoretically and thoroughly investigated. The distinctive polarization-selective and Q-tunable PIT shows robust features to performance degradations in traditional PIT system caused by inadvertent fabrication flaws or geometry asymmetry-variations, which paves way for the development of reconfigurable and flexible metasurface and, additionally, opens new avenues in robust and multifunctional controllable nanophotonics device design and applications.

Accession Number: WOS:000621768900023

PubMed ID: 33441586

Author Identifiers:

Author        Web of Science ResearcherID        ORCID Number

Liu, Jietao                  0000-0002-1156-9775

ISSN: 2045-2322

Full Text: https://www.nature.com/articles/s41598-020-78795-0



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明