An Open Dataset for Wearable SSVEP-Based Brain-Computer Interfaces
Author(s): Zhu, FK (Zhu, Fangkun); Jiang, L (Jiang, Lu); Dong, GY (Dong, Guoya); Gao, XR (Gao, Xiaorong); Wang, YJ (Wang, Yijun)
Source: SENSORS Volume: 21 Issue: 4 Article Number: 1256 DOI: 10.3390/s21041256 Published: FEB 2021
Abstract: Brain-computer interfaces (BCIs) provide humans a new communication channel by encoding and decoding brain activities. Steady-state visual evoked potential (SSVEP)-based BCI stands out among many BCI paradigms because of its non-invasiveness, little user training, and high information transfer rate (ITR). However, the use of conductive gel and bulky hardware in the traditional Electroencephalogram (EEG) method hinder the application of SSVEP-based BCIs. Besides, continuous visual stimulation in long time use will lead to visual fatigue and pose a new challenge to the practical application. This study provides an open dataset, which is collected based on a wearable SSVEP-based BCI system, and comprehensively compares the SSVEP data obtained by wet and dry electrodes. The dataset consists of 8-channel EEG data from 102 healthy subjects performing a 12-target SSVEP-based BCI task. For each subject, 10 consecutive blocks were recorded using wet and dry electrodes, respectively. The dataset can be used to investigate the performance of wet and dry electrodes in SSVEP-based BCIs. Besides, the dataset provides sufficient data for developing new target identification algorithms to improve the performance of wearable SSVEP-based BCIs.
Accession Number: WOS:000624702200001
PubMed ID: 33578754
eISSN: 1424-8220
Full Text: https://www.mdpi.com/1424-8220/21/4/1256