A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

A Potential Plasmonic Biosensor Based Asymmetric Metal Ring Cavity with Extremely Narrow Linewidth and High Sensitivity

2021-03-04

 

Author(s): Xu, TP (Xu, Tianping); Geng, ZX (Geng, Zhaoxin); Su, Y (Su, Yue)

Source: SENSORS Volume: 21 Issue: 3 Article Number: 752 DOI: 10.3390/s21030752 Published: FEB 2021

Abstract: To achieve high sensitivity and multi-mode sensing characteristics based on the plasmon effect, we explored a high-sensitivity refractive index sensor structure with narrow linewidth and high absorption characteristics based on theoretical analysis. The sensor structure is composed of periodic asymmetric ring cavity array, spacer layer and metal thin-film layer. The reflection spectrum of this structure shows six resonance modes in the wavelength range from visible to near-infrared. The sensor performance was optimized based on the change of the sensor structure parameters combining the simulation data, and the results shown that this kind of asymmetric laminated structure sensor has good sensing performance. In theory, it can be combined with microfluidic technology to achieve sensing detection of diverse test samples, multi-mode and multi-component, which has great potential in the field of biosensing.

Accession Number: WOS:000615512300001

PubMed ID: 33499375

eISSN: 1424-8220

Full Text: https://www.mdpi.com/1424-8220/21/3/752



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明