Impact of Channel Length and Width for Charge Transportation of Graphene Field Effect Transistor
Author(s): Hosen, K (Hosen, Kamal); Islam, MR (Islam, Md. Rasidul); Liu, K (Liu, Kong)
Source: CHINESE JOURNAL OF CHEMICAL PHYSICS Volume: 33 Issue: 6 Pages: 757-763 DOI: 10.1063/1674-0068/cjcp2004055 Published: DEC 2020
Abstract: The effect of channel length and width on the large and small-signal parameters of the graphene field effect transistor have been explored using an analytical approach. In the case of faster saturation as well as extremely high transit frequency, the graphene field effect transistor shows outstanding performance. From the transfer curve, it is observed that there is a positive shift of Dirac point from the voltage of 0.15 V to 0.35 V because of reducing channel length from 440 nm to 20 nm and this curve depicts that graphene shows ambipolar behavior. Besides, it is found that because of widening channel the drain current increases and the maximum current is found approximately 2.4 mA and 6 mA for channel width 2 mu m and 5 mu m respectively. Furthermore, an approximate symmetrical capacitance-voltage (C-V) characteristic of the graphene field effect transistor is obtained and the capacitance reduces when the channel length decreases but the capacitance can be increased by raising the channel width. In addition, a high transconductance, that demands high-speed radio frequency (RF) applications, of 6.4 mS at channel length 20 nm and 4.45 mS at channel width 5 mu m along with a high transit frequency of 3.95 THz have been found that demands high-speed radio frequency applications.
Accession Number: WOS:000615095400014
ISSN: 1674-0068
eISSN: 2327-2244
Full Text: https://cps.scitation.org/doi/10.1063/1674-0068/cjcp2004055