A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Raman signatures of defects-dependent vibration modes in boron doped monolayer to multilayer graphene

2021-02-25

 

Author(s): Liu, Y (Liu, Yi); Yang, MM (Yang, Mingming); Yang, YB (Yang, Yuanbo); Wang, GR (Wang, Guorui); Li, XL (Li, Xiaoli)

Source: OPTIK Volume: 228 Article Number: 166232 DOI: 10.1016/j.ijleo.2020.166232 Published: FEB 2021

Abstract: Raman spectroscopy has been widely utilized to investigate the properties of graphene materials and defect effects due to external injection. We presented a detailed Raman spectroscopy study of boron-doped single-layer to six-layer graphene with three different concentrations of substitutional boron atoms as similar to 0.16 wt. %,similar to 0.48 wt. %, and similar to 0.76 wt. %. The Raman signatures of G, 2D, and defect-dependent modes were illustrated. The properties of these modes were revealed with enhanced boron contents and increased layer number. The behaviors of defect-dependent modes reached a plateau when boron content was larger than 0.48 wt. % to show the saturation of interaction between boron and carbon atoms. These modes upshifted with increasing layer number because boron defects in diff ;erent layers interacted with each other by the cascade quenching. Our study provides a detailed investigation of how boron doping changed the properties of graphene layers by defect effects. The results will induce great potential for applications in optoelectronic devices.

Accession Number: WOS:000615934000005

ISSN: 0030-4026

eISSN: 1618-1336

Full Text: https://www.sciencedirect.com/science/article/pii/S0030402620320349?via%3Dihub



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明