A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Ultra-wideband tunable metamaterial perfect absorber based on vanadium dioxide

2021-02-18

 

Author(s): Wu, GZ (Wu, Guozhang); Jiao, XF (Jiao, Xiaofei); Wang, YD (Wang, Yuandong); Zhao, ZP (Zhao, Zeping); Wang, YB (Wang, Yibo); Liu, JG (Liu, Jianguo)

Source: OPTICS EXPRESS Volume: 29 Issue: 2 Pages: 2703-2711 DOI: 10.1364/OE.416227 Published: JAN 18 2021

Abstract: A dynamically adjustable ultra-wideband metamaterial perfect absorber (MPA) is proposed which consists of three resonance rings based on vanadium dioxide (VO2) and a metal ground layer separated by a dielectric spacer. The simulation results show that the terahertz (THz) absorption bandwidth of more than 90% absorptance reaches 3.30 THz, which covers from 2.34 to 5.64 THz, under different incident polarization angles. The range is better than that of previous VO2-based reports. Moreover, when the conductivity of VO2 changes from 200 S/m to 2x10(5) S/m, the absorption peak intensity can be adjusted continuously from 4% to 100%. The key is to optimize the geometric structure through interference cancellation and impedance matching theory, to achieve better absorption bandwidth and efficiency. Besides, the terahertz absorber has a wide-angle absorption effect both in TE and TM waves. Thus, the designed absorber may have many potential applications in modulating, sensing and imaging technology. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Accession Number: WOS:000609227300173

ISSN: 1094-4087

Full Text: https://www.osapublishing.org/oe/fulltext.cfm?uri=oe-29-2-2703&id=446609



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明