A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

A High-Efficiency High Power Driver Circuit for Joint Illumination and Communication System With Phase Shift Pre-Emphasis Technology

2021-01-28

 

Author(s): Wang, XY (Wang, Xiuyu); Tang, JL (Tang, Jiling); Zhang, X (Zhang, Xu); Xie, S (Xie, Sheng); Mao, XR (Mao, Xurui); Chen, HD (Chen, Hongda)

Source: IEEE ACCESS Volume: 9 Pages: 6325-6333 DOI: 10.1109/ACCESS.2020.3048168 Published: 2021

Abstract: This paper presents an improved white light-emitting-diode (LED) wireless transmitter for the Joint Illumination and Communication (JIC) System, which consists of two parts: the driver circuit and the pre-emphasis circuit. The main purpose of the driver circuit part is to solve the problem of dissipated power when sweeping the remaining carriers during the signal modulation of the high-efficiency, high-power and high-speed white LED driver. A push-pull structure driver with a current conduction angle less than 180 degrees is proposed, which is analogous to a Class C power amplification driver, thus avoiding the simultaneous existence of voltage and current on the driver circuit when the remaining carriers are swept out, and improves the efficiency of the LED driver. On this basis, the pre-emphasis circuit part adopts the phase shift technology to improve the data transmission rate, and the system efficiency has also been improved. Then, an improved class C push-pull structure white LED driver with phase shift pre-emphasis technology is formed. This novel driver and pre-emphasis technology achieve a system efficiency of 95.73% with a 10 W LED. The test results show that the system communication -3 dB bandwidth expanded from the original 8.3 MHz to 13.67 MHz, and the best-obtained transceiver baud rate is 25 Mbps at a distance of 1.3 m with BER of 1.63 x 10(-4) The test result verifies that the LED driver proposed in this paper is currently the highest figure of merit (FoM) for high power JIC systems.

Accession Number: WOS:000608231800001

ISSN: 2169-3536

Full Text: https://ieeexplore.ieee.org/document/9311160



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明