A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Influence of light spectra on the performance of juvenile turbot (Scophthalmus maximus)

2021-01-28

 

Author(s): Wu, LL (Wu, Lele); Wang, YN (Wang, Yunong); Li, J (Li, Jun); Song, ZC (Song, Zongcheng); Xu, SH (Xu, Shihong); Song, CB (Song, Changbin); Han, MM (Han, Mingming); Zhao, HX (Zhao, Haixia); Zhou, L (Zhou, Li); Wang, YF (Wang, Yanfeng); Li, X (Li, Xian); Yue, XL (Yue, Xinlu)

Source: AQUACULTURE Volume: 533 Article Number: 736191 DOI: 10.1016/j.aquaculture.2020.736191 Published: FEB 25 2021

Abstract: Appropriate light conditions in aquaculture systems are essential for fish welfare. Light spectrum, as one of the main characteristics of light, has a significant influence on the performance of teleosts. The development of light emitting diode (LED) technology allows for the precise regulation of light spectrum. This study examined the influence of five different LED spectra, red, orange, green, blue and full spectrum (white) on the performance of juvenile Scophthalmus maximus (seven months post hatching), by analyzing specific growth rate (SGR), feed conversion ratio (FCR), serum glucose and lactate contents, hepatic glycogen contents, antioxidative activity and pathogen resistance. A statistically higher SGR was observed in the blue group compared with the red, orange and white groups. Juveniles exposed to blue spectrum exhibited the lowest FCR. Juveniles exposed to red and orange light exhibited increased hepatic hsp70 mRNA levels, as well as increased mRNA expression levels of copper/zinc superoxide dismutase (cu/zn-sod), manganese superoxide dismutase (mn-sod), catalase (cat), glutathione peroxidase (gsh-px) and Iysozyme (Izm). However, hepatic and serum total superoxide dismutase (T-sod), Cat and Gsh-px activities were not significantly higher in the red and orange groups. Hepatic Lzm activity was lowest in the red group. There were no significant differences in serum protein carbonyl (PC) and malondialdehyde (MDA) contents. No statistical difference was recorded in blood lactate levels between the five groups. Turbot under red and orange light may have higher carbohydrate metabolism levels, characterized by higher blood glucose and hepatic glycogen content. Overall, the results of the current study suggested that light spectrum had a significant effect on the performance of juvenile turbot, with growth retardation, together with decreased antioxidative activity and pathogen resistance observed in the red and orange groups. Juveniles under blue spectrum exhibited the best growth performance, antioxidative activity and pathogen resistance. Thus, blue spectrum is suggested for rearing juvenile turbot and improving fish welfare in aquaculture systems.

Accession Number: WOS:000605010300008

ISSN: 0044-8486

eISSN: 1873-5622

Full Text: https://www.sciencedirect.com/science/article/pii/S0044848620338977?via%3Dihub



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明