A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Doping Effect on Cu2Se Thermoelectric Performance: A Review

2021-01-21

Author(s): Qin, YH (Qin, Yuanhao); Yang, LL (Yang, Liangliang); Wei, JT (Wei, Jiangtao); Yang, SQ (Yang, Shuqi); Zhang, ML (Zhang, Mingliang); Wang, XD (Wang, Xiaodong); Yang, FH (Yang, Fuhua)

Source: MATERIALS Volume: 13 Issue: 24 Article Number: 5704 DOI: 10.3390/ma13245704 Published: DEC 2020

Abstract: Cu2Se, owing to its intrinsic excellent thermoelectric (TE) performance emerging from the peculiar nature of "liquid-like" Cu+ ions, has been regarded as one of the most promising thermoelectric materials recently. However, the commercial use is still something far from reach unless effective approaches can be applied to further increase the figure of merit (ZT) of Cu2Se, and doping has shown wide development prospect. Until now, the highest ZT value of 2.62 has been achieved in Al doped samples, which is twice as much as the original pure Cu2Se. Herein, various doping elements from all main groups and some transitional groups that have been used as dopants in enhancing the TE performance of Cu2Se are summarized, and the mechanisms of TE performance enhancement are analyzed. In addition, points of great concern for further enhancing the TE performance of doped Cu2Se are proposed.

Accession Number: WOS:000602847000001

PubMed ID: 33327543

eISSN: 1996-1944

Full Text: https://www.mdpi.com/1996-1944/13/24/5704



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明