A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Dominant Loss Mechanisms of Whispering Gallery Mode RF-MEMS Resonators with Wide Frequency Coverage

2021-01-21

Author(s): Chen, ZJ (Chen, Zeji); Jia, QQ (Jia, Qianqian); Liu, WL (Liu, Wenli); Yuan, Q (Yuan, Quan); Zhu, YF (Zhu, Yinfang); Yang, JL (Yang, Jinling); Yang, FH (Yang, Fuhua)

Source: SENSORS Volume: 20 Issue: 24 Article Number: 7017 DOI: 10.3390/s20247017 Published: DEC 2020

Abstract: This work investigates the dominant energy dissipations of the multi-frequency whispering gallery mode (WGM) resonators to provide an insight into the loss mechanisms of the devices. An extensive theory for each loss source was established and experimentally testified. The squeezed film damping (SFD) is a major loss for all the WGMs at atmosphere, which is distinguished from traditional bulk acoustic wave (BAW) resonators where the high-order modes suffer less from the air damping. In vacuum, the SFD is negligible, and the frequency-dependent Akhiezer damping (AKE) has significant effects on different order modes. For low-order WGMs, the AKE is limited, and the anchor loss behaves as the dominant loss. For high-order modes with an extended nodal region, the anchor loss is reduced, and the AKE determines the Q values. Substantial Q enhancements over four times and an excellent f x Q product up to 6.36 x 10(13) at 7 K were achieved.

Accession Number: WOS:000603319700001

PubMed ID: 33302455

eISSN: 1424-8220

Full Text: https://www.mdpi.com/1424-8220/20/24/7017



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明