A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Wearable Sensors-Enabled Human-Machine Interaction Systems: From Design to Application

2021-01-21

Author(s): Yin, RY (Yin, Ruiyang); Wang, DP (Wang, Depeng); Zhao, SF (Zhao, Shufang); Lou, Z (Lou, Zheng); Shen, GZ (Shen, Guozhen)

Source: ADVANCED FUNCTIONAL MATERIALS Article Number: 2008936 DOI: 10.1002/adfm.202008936 Early Access Date: DEC 2020

Abstract: In comparison to traditional bulky and rigid electronic devices, the human-machine interaction (HMI) system with flexible and wearable components is an inevitable future trend. To achieve effective, intuitive, and seamless manipulation of high-performance wearable HMI systems, it is important to develop effective strategies for designing material microstructures on flexible sensors and electric devices with excellent mechanical flexibility and stretchability. The real-time acquisition of human physiology and surrounding signals through accurate and flexible sensors is the basis of wearable HMIs. Herein, the construction of a wearable HMI system that utilizes sensors, communication modes, and actuators is reviewed. The mechanisms and strategies for designing various flexible sensors based on different mechanisms are analyzed and discussed. The functional mechanism, material selection, and novel design strategies of each part are summarized in detail. The different communication modes in interactive systems and the manufacturing technology of soft machines are also introduced. Additionally, the most advanced applications of wearable HMI systems in intelligent identification and security, interactive controls for robots, augmented reality, and virtual reality have been highlighted. The review concludes with an overview of the remaining key challenges and several ideas regarding the further improvement of wearable HMI systems.

Accession Number: WOS:000603156000001

ISSN: 1616-301X

eISSN: 1616-3028

Full Text: https://onlinelibrary.wiley.com/doi/10.1002/adfm.202008936



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明