A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Electronic structures and band alignment transition in double-wall MoS2/WS2 nanotubes for optoelectronic applications

2020-12-31

 

Author(s): Guo, D (Guo, Dan); Yang, KK (Yang, Kaike); Zhang, CX (Zhang, Cai-Xin); Shen, T (Shen, Tao); Deng, HX (Deng, Hui-Xiong)

Source: JOURNAL OF PHYSICS D-APPLIED PHYSICS Volume: 54 Issue: 9 Article Number: 095105 DOI: 10.1088/1361-6463/abc4a7 Published: MAR 4 2021

Abstract: Band alignment caused by discontinuous band structures of two different materials plays a central role in semiconductor heterojunctions and interface physics. We investigate the electronic structures and band alignments of double-wall MoS2/WS2 nanotubes with different chirality and geometry. We find that the band gap of both armchair and zigzag nanotubes obeys E-G=E-G(in)-exp-[-delta>Delta R-alpha)], wutg E-G(in) being the band gap of the inner nanotube and Delta R the spacing distance between the inner and outer nanotubes. When placing MoS2 in the inner and WS2 in the outer of the nanotubes, the band alignment belongs to type-I because the conduction band minimum (CBM) of the inner MoS2 nanotube is lower than that of the outer WS2 nanotube, and the valence band maximum (VBM) of MoS2 nanotube is higher than that of WS2 nanotube. While putting the WS2 nanotube in the inner and MoS2 nanotube in the outer, the CBM and VBM of MoS2 nanotube are both lower than the corresponding band extreme points of WS2 nanotube when their diameter is small. Therefore, type-II to type-I band alignment transition occurs, originating from charge transfer with increasing spacing distance. Due to the adjustable band gap and electronic structures, we expect that these double-wall hetero-structured nanotubes will have great potential in optoelectronic devices.

Accession Number: WOS:000598690500001

ISSN: 0022-3727

eISSN: 1361-6463

Full Text: https://iopscience.iop.org/article/10.1088/1361-6463/abc4a7



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明