A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Image charge interaction correction in charged-defect calculations

2020-12-17

Author(s): Suo, ZJ (Suo, Zhao-Jun); Luo, JW (Luo, Jun-Wei); Li, SS (Li, Shu-Shen); Wang, LW (Wang, Lin-Wang)

Source: PHYSICAL REVIEW B Volume: 102 Issue: 17 Article Number: 174110 DOI: 10.1103/PhysRevB.102.174110 Published: NOV 30 2020

Abstract: Charged-defect calculation using a periodic supercell is a significant class of problems in solid state physics. However, the finite supercell size induces an undesirable long-range image charge Coulomb interaction. Although a variety of methods have been proposed to eliminate such image Coulomb interaction, most of the previous schemes are based on a rough approximation of the defect charge screening. In this work, we present a rigorous derivation of the image charge interaction with a defect screening model where the use of a bulk macroscopic dielectric constant can be avoided. We have verified this approach in comparison with a widely used approach for 12 different defects. Our correction scheme offers a much faster convergence concerning the supercell size for cases with considerable image charge interactions. In those cases, we also found that the nonlinear dielectric screening might play an important role. Our proposed defect screening model will also shed new light on understanding the defect screening properties and can be applied to other defect systems.

Accession Number: WOS:000594081700001

ISSN: 2469-9950

eISSN: 2469-9969

Full Text: https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.174110



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明