A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Strong coupling of single quantum dots with low-refractive-index/high-refractive-index materials at room temperature

2020-12-10

Author(s): Xu, XS (Xu, Xingsheng); Jin, SY (Jin, Siyue)

Source: SCIENCE ADVANCES Volume: 6 Issue: 47 Article Number: eabb3095 DOI: 10.1126/sciadv.abb3095 Published: NOV 2020

Abstract: Strong coupling between a cavity and transition dipole moments in emitters leads to vacuum Rabi splitting. Researchers have not reported strong coupling between a single emitter and a dielectric cavity at room temperature until now. In this study, we investigated the photoluminescence (PL) spectra of colloidal quantum dots on the surface of a SiO2/Si material at various collection angles at room temperature. We measured the corresponding reflection spectra for the SiO2/Si material and compared them with the PL spectra. We observed PL spectral splitting and regarded it as strong coupling between colloidal quantum dots and the SiO2/Si material. Upper polaritons and lower polaritons exhibited anticrossing behavior. We observed Rabi splitting from single-photon emission in the dielectric cavity at room temperature. Through analysis, we attributed the Rabi splitting to strong coupling between quantum dots and bound states in the continuum in the low-refractive-index/high-refractive-index hybrid material.

Accession Number: WOS:000592173500006

PubMed ID: 33219020

ISSN: 2375-2548

Full Text: https://advances.sciencemag.org/content/6/47/eabb3095



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明