A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Comprehensive design and simulation of a composite reflector for mode control and thermal management of a high-power VCSEL

2020-12-10

Author(s): Qi, YX (Qi, Yuxuan); Li, W (Li, Wei); Liu, SP (Liu, Suping); Ma, XY (Ma, Xiaoyu)

Source: JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS Volume: 37 Issue: 11 Pages: 3487-3495 DOI: 10.1364/JOSAB.405735 Published: NOV 1 2020

Abstract: We propose a composite top reflector composed of a distributed Bragg reflector (DBR) and a subwavelength high-contrast grating (HCG) for a high-power 808-nm vertical-cavity surface-emitting laser (VCSEL). The DBR and HCG in the reflector are connected by an indium tin oxide (ITO) surrounding layer, which makes it possible for the reflector to improve current injection uniformity and reduce heat generation while providing high reflectivity. The angle-dependent reflectivity of the composite reflector is optimized to suppress the high-order transverse modes of VCSEL while ensuring sufficient fundamental mode feedback. The number of top DBR periods and the thickness of the ITO surrounding layer are optimized to reduce the loss and provide high out-coupling efficiency. The double resonator coupled by top DBR is designed to provide optimal resonant wavelength stability, longitudinal optical confinement factor, and thermoelectric characteristics. Optical simulation results demonstrate that the well-designed configuration can provide a highest fundamental mode reflectivity of 99.7%, an out-coupling efficiency of 65%, a wavelength stability rate of 0.011 with the thickness of the ITO layer, and a confinement factor of 0.05. The transverse modes with order greater than 2 are effectively suppressed. The result of the thermoelectric model shows that the composite reflector-based VCSEL has low operating temperature and uniform current injection; thermal resistance of 0.87K/mW is realized. In this context, devices with high emission efficiency and beam quality can be expected. (C) 2020 Optical Society of America

Accession Number: WOS:000583700500080

ISSN: 0740-3224

eISSN: 1520-8540

Full Text: https://www.osapublishing.org/josab/abstract.cfm?uri=josab-37-11-3487



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明