A Model of Dual Fabry-Perot Etalon-Based External-Cavity Tunable Laser Us...
Internal motion within pulsating pure-quartic soliton molecules in a fibe...
Enhanced light emission of germanium light-emitting-diode on 150 mm germa...
The Fabrication of GaN Nanostructures Using Cost-Effective Methods for Ap...
Negative-to-Positive Tunnel Magnetoresistance in van der Waals Fe3GeTe2/C...
Quantum Light Source Based on Semiconductor Quantum Dots: A Review
A High-Reliability RF MEMS Metal-Contact Switch Based on Al-Sc Alloy
Development of a Mode-Locked Fiber Laser Utilizing a Niobium Diselenide S...
Development of Multiple Fano-Resonance-Based All-Dielectric Metastructure...
Traffic Vibration Signal Analysis of DAS Fiber Optic Cables with Differen...
官方微信
友情链接

Review of experimental approaches for improving zT of thermoelectric materials

2020-12-10

Author(s): Ma, Z (Ma, Zhe); Wei, JT (Wei, Jiangtao); Song, PS (Song, Peishuai); Zhang, ML (Zhang, Mingliang); Yang, LL (Yang, Liangliang); Ma, J (Ma, Jing); Liu, W (Liu, Wen); Yang, FH (Yang, Fuhua); Wang, XD (Wang, Xiaodong)

Source: MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING Volume: 121 Article Number: 105303 DOI: 10.1016/j.mssp.2020.105303 Published: JAN 2021

Abstract: In the past years, various work has been devoted to improving the thermoelectric figure of merit zT, and remarkable advances have been achieved. In 2019, an abnormal zT value exceeding 400 in the Cu2Se system was measured experimentally by a Japanese group. In 1993, the theoretically predicted maximum zT value for a 0.5-nm-wide Bi2Te3 quantum wire was just 14. Sometimes, large deviations exist between experimental results and theoretical predictions. It is necessary to summarize the recent experimental results associated with the improvement of zT. In principle, the improvement of zT value arises from a high power factor and a low thermal conductivity, whereas a high power factor stems from a high Seebeck coefficient and a high electrical conductivity. Herein, several approaches were reviewed, including increasing Seebeck coefficient, electrical conductivity, power factor, and decreasing thermal conductivity to improve thermoelectric performances. In every experimental study, the underlying mechanisms, such as material components, atomic structure characterizations, and fabrication processes for enhancement of thermoelectric performances were discussed in detail. All experimental-based references have major implications for researchers in related fields. Finally, the current challenges hindering the further improvement of zT value were pointed out, and several promising routes were proposed.

Accession Number: WOS:000585292600004

ISSN: 1369-8001

eISSN: 1873-4081

Full Text: https://www.sciencedirect.com/science/article/pii/S1369800120312385?via%3Dihub



关于我们
下载视频观看
联系方式
通信地址

北京市海淀区清华东路甲35号(林大北路中段) 北京912信箱 (100083)

电话

010-82304210/010-82305052(传真)

E-mail

semi@semi.ac.cn

交通地图
版权所有 中国科学院半导体研究所

备案号:京ICP备05085259-1号 京公网安备110402500052 中国科学院半导体所声明